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Statistical approach to the orienting photopolymernematic-liquid-crystal anchoring energy
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A statistical approach for the nematic order on an orienting photopolymer, also taking into account the
surface anisotropy, has been formulated in the framework of mean field theory. This approach gives a
Boltzmann-type orientational distribution function depending on both nematic-nematic and nematic-polymer
interaction energies. The azimuthal anchoring energy coefficient has been evaluated from the extra Helmholtz
free energy within an interface of thicknegshat may be interpreted as the length over which the density
changes from pure polymer to pure liquid crystal or, generally speaking, as the typical length over which the
interaction between polymer and liquid crystal takes place. In the case of surface anisotropy given by linearly
polarized UV photopolymerization, the anchoring energy coefficient depends on the exposure timeéand on
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I. INTRODUCTION the density of polymer molecules and the density of liquid
crystal molecules in an interface of thicknessviore gener-

A central problem for constructing liquid crystal electro- ally, ¢ represents the typical length over which the long-
optical devices is obtaining a substrate with anisotropic surfange interaction forces between polymer and liquid crystal
face anchoring properties. Well known methods to achiev@ccur. Even in the case of a well defined border between
this condition are, for instance, to use obliquely evaporated@olymer and liquid crystal, the density variation approach
SiO, layers, Langmuir-Blodgett films, or rubbed polymer can be used to mimic the presence of these surface forces.
films. The most common surface treatment, i.e., the mechani- From a fundamental point of view, the polymer-nematic
cal rubbing of polyimide layers, has some disadvantages likéterface is completely described by all the molecular corre-
physical damage and nonuniformities and generation of duggtion functions, which, in practice, cannot be determined.
particles and/or electrostatic particles. A nonrubbing alignHowever, by using the mean field theory of Maier and Saupe
ment process for polymer layers would not have the disadf4] one can write the macroscopic Helmholtz free energy as
vantages listed above. The recently studied photoalignmerg functional of the orientational distributidif(2) taking into
process is an alternative polymer treatment for the surfacgccount all the molecular interactions. The functigf) is
anchoring of liquid crystals. First, it has been demonstrate@btained by means of a self-consistent calculation, in order
that polyvinyl)4-methoxycinnamate and paoinyl)cin-  to minimize the free energy in the equilibrium stdfe-7].
namate films, when exposed to linearly polarized ultraviolet ~Starting with a pairwise-additive potential energy
light (LPUV) can be effective as alignment laydrs. The
aligning effect of polyimide films exposed to LPUV light has U= z Wi Q00
also been reporte®]. & J J

One of the main physical parameters of photoalignment is
the exposure time because both the experiment and theorét0€ constructs the free energy
ical arguments lead to a well defined UV irradiation time
which gives the maximum anisotropy of the polymer layer f=5—TS=J drNJ donN
[1,3]. We may consider that the photopolymer orienting layer
generates a microscopic surface field decaying toward the
bulk. The anisotropy of the surface is given by an order +k-|-f drNj dQNPMN) |n p(N).
parameter eventually depending on the exposure t8heOf

course, the anchoring properties of the substrate must also ben _ .

linked to the properties of the liquid crystal where the first integral stands for the internal energy and the
To study the order induced in a nematic material by a56c0nd one takes 'n(th% account the entropy. Rhgarticle

photopolymer layer, a rigorous statistical mechanical analydistribution functionP™ is

sis is quite complicated. In the case of phase separation be-

(iE,j) W(rij € 1Qj)}P(N)

exd — BU(rN,QN)]

tween the nematic and the polymer, the transition from the pN(r,  r\,Q4,.... Q)= '
surface to the bulk can be described by the variation of both L N rdrNfdQN exd - gu]
1
* Authors to whom correspondence should be addressed. p= kT"
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FIG. 1. Schematic drawing of two liquid crystal molecuéeand 3 N, ~ ~
a’ and a polymer molecula; . Not all the angles are in the same X vd rldle Ri(r)g(o)Vi(r,6p), (2.3

plane.

where the subscript 1 and the tilde are associated with the
Of course, the fulN-body distribution function cannot be polymer long axis.
used as it is. The mean field approximation simplifies this Introducing the average potentials
distribution function. Eventually, we can use only a one-
particle distribution function, which separates the radial dis-

N
- 3
tribution from the orientational onfgs]: nU(6o) = v J d*r U(r, 6o)R(r),

N B
R(r)gf(g)_ (1.1) nlul(eo):VJ’ d3r Vy(r,0p)Ry(1), (2.2

wheren andn, are the concentrations of nematic molecules

R(r) is different from a constant only if the distance is @hd polymer molecules, respectively, in the interface of

very small, i.e., of the order of several molecular dimensionsthicknessg,
Also, one has to use the normalizing conditions

B N q _Nl 23
X n=y andn;=+- 2.3
Noog.
fVR(f) y ' dr=N, (1.2) Equation(2.3) can be written as

Nn
8=7f dQ’f(e’)f dQ f(0)U(6y)
ff(a)dﬂzl.

+Nn1f dng(b)fdm(e)ul(’éo). (2.9

In a recent pap€i3], we analyzed the orientational effect o o _ _
of cross-linked polymerized photopolymers on nematic lig-By considering the_ cqntnbunon of the orientational degrees
uid crystals. We discussed this effect in terms of a time deof freedom of the liquid crystal molecules to the entropy of

pendent distribution function of the polymerg,6,). the system, one has
In this paper we start with a theoretical model for the N N
nematic order including surface anisotropy in the framework __ f 3 N N
of mean field theory. It gives us a Boltzmann-type distribu- S=—k| drda \Y, R(T(O)In Y R(NT(6)

tion function depending on both nematic-nematic and
nematic-polymer interaction energies. Then, assuming a :_ka dQ f(6)In[f(6)]+ const. 2.5
small twist occurs, we will evaluate the anchoring energy

from the extra Helmholtz free energy. Concluding remarks ) ) ) o )
end the paper. To obtain the best orientational distribution functi(®) we

have to minimize the Helmholtz free ener@y= £— TS, with
the constraint/f(6)dQ=1. So §(F+\[f(6)dQ)=0 im-
Il. THEORETICAL MODEL plies that

Let us consider one liquid crystal molecidenteracting 9
via 6, and 6, with a liquid crystal molecul@’ and a poly- 5 7'"+)\J f(&)dQ) = a—f<}"+>\J’ f(9)d9> =0,

mer moleculea; (Fig. 1). To evaluate the internal energy of (2.6)
the system one has to take into account the interactions be-

tween liquid crystal molecules and also the interactions obecause the free enerdy does not contain explicitly the
polymer sidechains with nematic molecules. Hence the interderivative of the functiorf ().

nal energy will be given by Introducing

011703-2



STATISTICAL APPROACH TO THE ORIENTING . .. PHYSICAL REVIEW B5 011703

2
nf dQ'f(6")U(6y)=M(0), Jo P,(cosfy)de’
_ _ =2mP,(cosh)P,(cosh’)
nlf dQ19(6)U1(6p)=M1(0), (2.7 1 r2u
+§f P,1(cosh) P, (cosh’)cogo— ¢ )dg’
one gets 0
+1f2ﬂP (COSH) Py COSH')
— cos cos
f(0)=%exp{—w 2.8 12)o % #

XcosAe—¢')de', (2.12

with the standard notation for the partition function, L . . . .
and similar relations for the nematic-polymer interaction:

M(0)+M,(6) 2m ~ ~
Z(T)=| ex e dQ. (2.9 f P,(cosfg)de’ =2mP,(cosh)P,(cosh)
0
The average interaction potentidls and U; cannot be + EJZWP C0S0)P+(COoSO
known exactly and we can take into account only the fact 3 2l Pl )

that the interactions must be evendp andé,, and have a

~ Xcoge—¢')de’
minimum for ;=0 and forf,=0. This comes from the fact te—e')de

that the van der Waals dispersion energy is minimum when 1 (2= ~

the molecules are paralléhat is, it is proportional to c3%) * 1_2j0 P22(€0s6) Py cosd)
and the repulsive steric energy must be maximum when the

two molecules are at right anglghat is, proportional to XcosAeo—¢')de'. (2.13

sir? ). But sirf #=1—cos ¢ and, apart from a constant, both
interactions lead to a minimum proportional to €6sWe
can developU up to the second order in cégand cos,,
namely,

P», and P,, have the standard significance of associated
Legendre functions.

The last two terms vanish because the integrals from 0 to
27 of cos(p—¢;) or cos 2(p—¢;) also vanish. Then

U(6g)=—uP,(cosby), ~ ~
(o) 2 o) M(60)= _ulnlf dQ19(0)P(cosby)
U1(8) = —uyP,(cosby), (2.10 2m L 5 o
:_Uln]_J d(,le g(@)PZ(COSHO)Sinﬁdﬁ
whereP,(cosé) is the Legendre polynomial of second order. 0 0

We have to emphasize thatandu,; do not have dimensions T _ o
of energy, but energy times volume, as is shown by(Eap. == u1n1P2(COSG)27Tf g(6)P,(cosb)singde
They should represent approximately the depth of the poten- 0
tial well times the covolume, i.e., a region including the first =—uyn;S;P,(cosh), (2.14
molecule inside which the second’s center can never be
found because of the molecular impenetrability. where
Let us evaluateM (6): -
S, = ZwJO g(9)P,(cosh)sind de. (2.15
M(6)= —unf dQ'f(6")P,(cosby) = —unf f(o")
0 Eventually, we get
2w 1
X fo P,(cosfg)de’ [sin'de’ f(0)= Zexr[(unSJr uin1S;)P,(cosh)/KT]. (2.16
m For the sake of simplicity we introduce the nondimen-
=-un Pz(COSH)ZWf f(0")Py(cosd’)sing’do’ sional parameters=un/kT ands;=u;n, /kT representing
0 the magnitudes of nematic-nematic and nematic-polymer in-
= —unSP(cosh) (2.1  teractions irkT units. Hence, the partition function becomes
whereS=2[5f(0")P,(cosd’)sing'dé’ is the scalar order Z=j exf (eS+e,S;)P,(cosh)]d(, (2.17
parameter of the nematic, and for this calculation we used
the equations and the orientational distribution function has the expression
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f(a):%exp[(gs+elsl)P2(cos¢9)]. (2.18

Now, let us evaluate the internal energy of the system
Nn
8=7f dQ’f(G’)f dQ f(6)U(by)
+anf dnlg(b)f dQ f(9)U1(6o)

=N

1
EJ f(a)M(a)dQ+f f(e)Ml(a)dQ).
(2.19
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By taking into account Eq$2.23 and(2.24), the free energy
is obtained as

F=E-TS=NKT[—%eS*°—¢,SS+£S*+£,SS—InZ]

=NkT(eS*~InZ). (2.25
Let us introduce the free energy densitykifi units:
ez S 2.2
= m_——n nzZ+ > ( . 6)

The free energy density, depends on the liquid crystal order
parameterS and on the partition functiorZ. In turn, the
partition functionZ depends oisandS; as well as om and
n,. The last two parameters are calculated with respect to

To obtain the internal energy in terms of the scalar ordethe same valu®/ so, considering the same order of magni-

parametersS and S; we have to calculate

T (27
ff(e)M(a)dQ:—jf unSfo)P,(6)sinfddode
0Jo
=—-unS=—kTeS? (2.20

and
7 (27
0 Jo

=—U1n18$_=—kT815$_ (22])

and the result is

£=—NSkTieS+e,S). (2.22

Similar calculations allow us to obtain the nematic orien-

tational entropys:

S= —Nkf dQ f(9)In[f(6)]

exd (eS+e1S;)P,(cosh)]
z

=—Nkf dQ

{ exd (eS+e,S;)P,(cosé)]
XIn Z

exd (eS+ slil) P,(cosb)] (2.23

=—Nkf dQ

X{(SS+ 8181) PZ(COSﬂ) —In Z}

Then,

~TS= NkTJ dQ f(0)[£S+e,S,]P,(cosO)

+Nka dQ f(o)[—InZ]

=NkT[eS?*+&,SS—InZ]. (2.249

tude for liquid crystal and polymer densities,

ng §

el (2.27

where¢ is the thickness of the interface region ahés the
thickness of the sample, which is much larger tialivhen
one is discussing bulk properties, may be neglected with
respect tan, ande,; may be neglected with respect 40

We may simplify further the expression of the free energy
density. Let us expres§ #) as a function ok=cosé. Then

1
f(0)=Z exd(eS+e15)Pa(X)],

1
Z=27rf exd (eS+e,S;)Py(x)]dx.
-1
(2.28
One gets

dZ—Z fl J S S,)P d
de 47 71£EXH:(8 +£1S)Py(x)]dx

= 277f1 P,(x)Sexd (eS+,S;)Py(x)]dx=2S
-1

(2.29

and

(2.30

Integrating with respect te, apart from a constant, we ob-
tain

InZ=¢S? (2.3)

or
snSZ_nI . -
2 —En . (2. 2)
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FIG. 2. Self-consistent calculation of the order parameter for a FIG. 3. Self-consistent calculation of the order parameter for a
nematic-nematic interactiom much smaller than the nematic- nematic-nematic interaction greater than the nematic-polymer inter-
polymer interactiore, . The nematic-polymer interaction decreasesaction. The nematic-polymer interaction decreases from top to bot-
from top to bottom. In bulk the nematic phase disappears beeausetom. ¢ is now larger than the critical value. Lines are guides to the
is smaller than a critical valug=4.5). Lines are guides to the eye. eye.

We now have two alternative expressions for the free energlquid crystal order parameted increases with increasing
density: and approaches a certain limit foe £.
As previously discussed, the lifting of director degeneracy
n n n is due to the liquid-crystal—polymer interaction. If an exter-
F=-nIinZ+3InZ=-7InZ=-7eS". (233  nal agent(a magnetic field, for instang¢ends to rotate the
director in the surface plane, the distribution function in the
sublayers of thicknesdz will have maxima not for the value
lIl. EVALUATION OF ANCHORING COEFFICIENT /=0 but for certain angles# 0, wherea will vary with z
Considering that, foe/e, large, the value ofs does not
The nematic liquid crystal properties in the interface ofvary too much even in the interface, the distribution function
thickness¢ are investigated by considering the effect of thef(0+ «) is of the same kind for each sublayer:
surface field induced by the photopolymer layer. In the ab-
sence of a surface interaction, the director orientation will 1
become degenerate. It is the surface interaction that imposes f(0+ @)= ——exf e SP,(cosf) +¢,S,P,(cos 6+ @))]
the orientation of the director. ! 3.2
Let us consider a very thin layer of liquid crystal in con- '
tact with a polymer having the order parameSr, lower
than the normal value of the order parameef the nematic
phase. To explain the transition from the surface to the bulk
! o . ; z
in terms of the variation of both nematic density and also a(Z)=¢-. (3.3
polymer density, we assumed the simplest dependence on 3
of the formn(z)=ne ?¢ andn(z)=n(1—e ?¢). For the
sake of simplicity we have considered that the densities oNote that in Eq.(3.2) we have consideredSP,(cos) and
the polymer and the liquid crystal are equal, and also that ir1S;P,(cos@+ «)) separately because the nematic-nematic
the interface ze (0,£)] the sum ofn,(z) andn(z) is equal interaction must be invariant to a rotation of angie
to n. whereas the nematic-polymer interaction will certainly de-
If we divide the interface into small sublayers of thicknesspend one. It is only the nematic-polymer interaction that
dzat a certairg, we will have in each of them a distribution gives an increase in the free energy. Of course,
function centered o= 0, but having different widths, i.e.,
different order parameters.
In Figs. 2 and 3 we have plotted thelependence o for Z1= j exfle SPy(cosf) + 1S, Po(cos 6+ @) ]d
some values ok, &;, and S; solving the self-consistent (3.9
equation forS namely,

wherea, for the sake of simplicity, varies linearly with

will be a function ofz

fflexp[(sS+slsl)Pz(x)]Pz(x)dx Together withZ,, F;=—(n/2)InZ; will also be a func-
= I Lexd (eS+e,S)P,(x)]dx (3D tion of z The extra free energy density, as a functionzof
- will be

where x=cosé. In Fig. 2 we have used a value efthat

normally would not allow the formation of the nematic AF(Z)=—EIné. (3.5
phase. Ife; is larger enough thaa the nematic phase exists 2 Z

only in a region of the order of, decaying in the bulk to an

isotropic liquid. In Fig. 3e has the normal value of a liquid Thus, the extra energy per unit surface due to a torsion of the
crystal (=4.5 and even ife,S; is small the value of the director will be
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&
A]-"=ka AF(z)dz (3.6
0

We have to consider the fact that beyond the valuiee., in

the bulk, the liquid crystal is undistorted, so the extra free !

energy density is zero.

The result of the integration depends on the torsion angle

¢. By definition

1 dzA}" 3.7
5 g2 W :
2 do =0 a
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FIG. 4. f(m)/m as a function ofn, wherem=eS+¢,S; and

is the coefficient of the azimuthal anchoring. To calculate thef(m) is defined in £q/(3.13.

anchoring coefficientiv, we must not forget that the azi-
muthal distortion needs to be very small, so we can make a AF(z)=
series development &,(cos@+ «)) with respect taw, up to

0(a®):

P,(coq 6+ a))=P,(cosh) + AP, (3.8

whereAP is very small.
The partition function will be of the kind

Z,= f exf eSP,(cosh) +&,S;P,(coq 0+ a))]d)
= f eXF[(SS-f- 8181) PZ(COSB)]GXF((elSlAP)dQ
%J’ eXF{(SS+ 8131) P2(COS€)][1+8181AP]dQ

=Z

1
1+ Z J eXF{(SS"F 8181)P2(C050)](8181A P)dQ

z[1+f f(9)(slslAP)dQ], (3.9

where, if a is small, we use the approximati@i=1+a.
With the same approximation written in the form Ir{&)
=@, one gets

n Z n
AF(z)=—§In71=—§In{1+f f(0)(£,S,AP)dQ

n

whereAP is

AP=3acosfsinf+3a?(1—2 cog 0)+0(ad).
(3.11

Hence the extra free energy density is

naf28 lSl
4(8S+ 8181)

2 ex;{g(ss—k 8181)} V(6/m)(eS+£,S;)

erfi[ V3(eS+£,5,)/2]

X

—2-3(sS+&,S)) |, (3.12

the function erf(x)=i erf(—ix)=/5expt?)dt being strictly
real although it contains the imaginary numbery/— 1.

In Fig. 4 we represent a plot di{m)/m as a function of
m=eS+¢,S;, where

Hm) 2e3™2\/6m/
m=——— 7 —>—
erfi(y3m/2)

f(m)/m is positive only form>1.128, which is just the
value for which the isotropic to nematic transition appears in
bulk. It corresponds to a value efaround 4.5.

The extra free energy per unit surface will be

2—3m. (3.13

¢ Zp E (¢
Afszf AF| = dz:kT—j AF(a)de
0 3 ¢ Jo
_né Le1S
—1—2<p o f(m)KT, (3.19
and
_1d2A _nng&‘lSlf 31
Wa_id—goz @:0_1_2 m (m). (3.19

Considering that also varies in the interface together with
n(z) andn,(z), it is possible to make a self-consistent nu-
merical computation. The result for the constawt as a
tridimensional plot with respect toS ande;S; is presented
in Fig. 5.

One may consider typical values for liquid crystals as
follows: molecular mas# = 0.5 kg/mol, average densitin
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function which depends both on the nematic-nematic inter-
action energy and on the nematic-polymer energy, and

also on the polymer order paramet8s. In the interface
region of thicknesg, S depends orz by means ofh(z) and
n.(z). Assuming that the twist angle, induced, for in-
stance, by an external field, is small, we have estimated the
excess free energy density, which depends quadratically on
a. This gives a finite azimuthal anchoring energy coefficient
w, which depends on the interface thicknésshe nematic-
polymer interactiorz; , the polymer order parametgy, and

a certain functiorf(m). The last two are the most important
because through the dependenceSnone gets a depen-
dence on the exposure time to the UV light3]. Actually,

for values ofeS of physical interest, i.e.gS up to 3 and
FIG. 5. Three-dimensional plot of the anchoring coefficiegt  €:S; up to 1, the function £;S, /m)f(m) may be expanded

as a function of5; andS The height is in mJ/f in series and one gets
the region up toé) p=5x10%kg/n?, interface thickness s
— _ t &
£=5nm, T=300K. With these values :nl f(m)=—0.08+ 1.689181+O.258181)2
néKT mJ
12 "m” . . | |
which is an almost linear dependence &, if the latter is
and the function not larger than 1, i.e., we have a mainly linear dependence of
W, on S;. It was shown in Figs. 3 and 4 th&depends on
f(m 1 2e3™2,/6m/ 7 the values ofS; only in the transition region of ordej, not
m m erfi(y3m/2) —2-3m in the bulk. So the contribution d§, to the bulk state of a

nematic liquid crystal is just to give the direction of On

is 2 form=4, corresponding to nematic scalar order paramhe other hand, as far as the anchoring energy is concerned,
eters around 0.7see also Fig. B For e~4.5, ¢,~3, S; the value ofS; is essential because the anchoring coefficient

~0.3, the anchoring coefficient is w, does depend 08, both directly and also by means 8f
which depends, in turn, 08; within the transition region.

mJ One may also see that, although depends linearly on
Wa%l'sﬁ' the transition width¢, one has littlg(if any) control of & The

only parameter that may be controlled, for example, by
The numerical computation presented in Fig. 5, which alsa¢hanging the exposure tini8], is S; .
implies a self-consistent calculus f8r agrees well with this
value, giving for w, numerical values between 1 and 2
mJ/nt. This order of magnitude corresponds to a strong an- ACKNOWLEDGMENTS
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IV. CONCLUDING REMARKS
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