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Statistical approach to the orienting photopolymer–nematic-liquid-crystal anchoring energy
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A statistical approach for the nematic order on an orienting photopolymer, also taking into account the
surface anisotropy, has been formulated in the framework of mean field theory. This approach gives a
Boltzmann-type orientational distribution function depending on both nematic-nematic and nematic-polymer
interaction energies. The azimuthal anchoring energy coefficient has been evaluated from the extra Helmholtz
free energy within an interface of thicknessj that may be interpreted as the length over which the density
changes from pure polymer to pure liquid crystal or, generally speaking, as the typical length over which the
interaction between polymer and liquid crystal takes place. In the case of surface anisotropy given by linearly
polarized UV photopolymerization, the anchoring energy coefficient depends on the exposure time and onj.
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I. INTRODUCTION

A central problem for constructing liquid crystal electr
optical devices is obtaining a substrate with anisotropic s
face anchoring properties. Well known methods to achi
this condition are, for instance, to use obliquely evapora
SiOx layers, Langmuir-Blodgett films, or rubbed polym
films. The most common surface treatment, i.e., the mech
cal rubbing of polyimide layers, has some disadvantages
physical damage and nonuniformities and generation of d
particles and/or electrostatic particles. A nonrubbing alig
ment process for polymer layers would not have the dis
vantages listed above. The recently studied photoalignm
process is an alternative polymer treatment for the surf
anchoring of liquid crystals. First, it has been demonstra
that poly~vinyl!4-methoxycinnamate and poly~vinyl!cin-
namate films, when exposed to linearly polarized ultravio
light ~LPUV! can be effective as alignment layers@1#. The
aligning effect of polyimide films exposed to LPUV light ha
also been reported@2#.

One of the main physical parameters of photoalignmen
the exposure time because both the experiment and the
ical arguments lead to a well defined UV irradiation tim
which gives the maximum anisotropy of the polymer lay
@1,3#. We may consider that the photopolymer orienting lay
generates a microscopic surface field decaying toward
bulk. The anisotropy of the surface is given by an ord
parameter eventually depending on the exposure time@3#. Of
course, the anchoring properties of the substrate must als
linked to the properties of the liquid crystal.

To study the order induced in a nematic material by
photopolymer layer, a rigorous statistical mechanical ana
sis is quite complicated. In the case of phase separation
tween the nematic and the polymer, the transition from
surface to the bulk can be described by the variation of b
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the density of polymer molecules and the density of liqu
crystal molecules in an interface of thicknessj. More gener-
ally, j represents the typical length over which the lon
range interaction forces between polymer and liquid crys
occur. Even in the case of a well defined border betwe
polymer and liquid crystal, the density variation approa
can be used to mimic the presence of these surface forc

From a fundamental point of view, the polymer-nema
interface is completely described by all the molecular cor
lation functions, which, in practice, cannot be determin
However, by using the mean field theory of Maier and Sau
@4# one can write the macroscopic Helmholtz free energy
a functional of the orientational distributionf (V) taking into
account all the molecular interactions. The functionf (V) is
obtained by means of a self-consistent calculation, in or
to minimize the free energy in the equilibrium state@5–7#.

Starting with a pairwise-additive potential energy

U5(
~ i , j !

V~r i j ,V i ,V j !,

one constructs the free energy

F5E2TS5E drNE dVNF (
~ i , j !

V~r i j ,V i ,V j !GP~N!

1kTE drNE dVNP~N! ln P~N!,

where the first integral stands for the internal energy and
second one takes into account the entropy. TheN-particle
distribution functionP(N) is

P~N!~r 1 ,...,r N ,V1 ,...,VN![
exp@2bU~r N,VN!#

*drN*dVN exp@2bU#
,

b5
1

kT
.
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Of course, the fullN-body distribution function cannot b
used as it is. The mean field approximation simplifies t
distribution function. Eventually, we can use only a on
particle distribution function, which separates the radial d
tribution from the orientational one@8#:

R~r !
N

V
f ~u!. ~1.1!

R(r ) is different from a constant only if the distance
very small, i.e., of the order of several molecular dimensio
Also, one has to use the normalizing conditions

E
V
R~r !

N

V
r 2dr5N, ~1.2!

E f ~u!dV51.

In a recent paper@3#, we analyzed the orientational effe
of cross-linked polymerized photopolymers on nematic l
uid crystals. We discussed this effect in terms of a time
pendent distribution function of the polymers,g(u1).

In this paper we start with a theoretical model for t
nematic order including surface anisotropy in the framew
of mean field theory. It gives us a Boltzmann-type distrib
tion function depending on both nematic-nematic a
nematic-polymer interaction energies. Then, assumin
small twist occurs, we will evaluate the anchoring ene
from the extra Helmholtz free energy. Concluding rema
end the paper.

II. THEORETICAL MODEL

Let us consider one liquid crystal moleculea interacting
via u0 and ũ0 with a liquid crystal moleculea8 and a poly-
mer moleculea1 ~Fig. 1!. To evaluate the internal energy o
the system one has to take into account the interactions
tween liquid crystal molecules and also the interactions
polymer sidechains with nematic molecules. Hence the in
nal energy will be given by

FIG. 1. Schematic drawing of two liquid crystal moleculesa and
a8 and a polymer moleculea1 . Not all the angles are in the sam
plane.
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E5
1

2 EV
d3r 8dV8

N

V
R~r 8! f ~u8!

3E
V
d3r dV

N

V
R~r ! f ~u!V~r ,u0!

1E
V
d3r dV

N

V
R~r ! f ~u!

3E
V
d3r 1dV1

N1

V
R1~r 1!g~ ũ !V1~r ,ũ0!, ~2.1!

where the subscript 1 and the tilde are associated with
polymer long axis.

Introducing the average potentials

nU~u0!5
N

V E d3r V~r ,u0!R~r !,

n1U1~ ũ0!5
N1

V E d3r V1~r ,ũ0!R1~r !, ~2.2!

wheren andn1 are the concentrations of nematic molecu
and polymer molecules, respectively, in the interface
thicknessj,

n5
N

V
and n15

N1

V
~2.3!

Equation~2.3! can be written as

E5
Nn

2 E dV8 f ~u8!E dV f ~u!U~u0!

1Nn1E dV1g~ ũ !E dV f ~u!U1~ ũ0!. ~2.4!

By considering the contribution of the orientational degre
of freedom of the liquid crystal molecules to the entropy
the system, one has

S52kE d3r dV
N

V
R~r ! f ~u!lnFN

V
R~r ! f ~u!G

52kNE dV f ~u!ln@ f ~u!#1const. ~2.5!

To obtain the best orientational distribution functionf (u) we
have to minimize the Helmholtz free energyF5E2TS, with
the constraint* f (u)dV51. So d„F1l* f (u)dV…50 im-
plies that

d

d f S F1lE f ~u!dV D5
]

] f S F1lE f ~u!dV D50,

~2.6!

because the free energyF does not contain explicitly the
derivative of the functionf (u).

Introducing
3-2
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nE dV8 f ~u8!U~u0!5M ~u!,

n1E dV1g~ ũ !U1~ ũ0!5M1~u!, ~2.7!

one gets

f ~u!5
1

Z
expF2

M ~u!1M1~u!

kT G ~2.8!

with the standard notation for the partition function,

Z~T!5E expF2
M ~u!1M1~u!

kT GdV. ~2.9!

The average interaction potentialsU and U1 cannot be
known exactly and we can take into account only the f
that the interactions must be even inu0 and ũ0 , and have a
minimum foru050 and forũ050. This comes from the fac
that the van der Waals dispersion energy is minimum w
the molecules are parallel~that is, it is proportional to cos2 u!
and the repulsive steric energy must be maximum when
two molecules are at right angle~that is, proportional to
sin2 u!. But sin2 u512cos2 u and, apart from a constant, bo
interactions lead to a minimum proportional to cos2 u. We
can developU up to the second order in cosu0 and cosũ0,
namely,

U~u0!52uP2~cosu0!,

U1~ ũ0!52u1P2~cosũ0!, ~2.10!

whereP2(cosu) is the Legendre polynomial of second orde
We have to emphasize thatu andu1 do not have dimension
of energy, but energy times volume, as is shown by Eq.~2.4!.
They should represent approximately the depth of the po
tial well times the covolume, i.e., a region including the fi
molecule inside which the second’s center can never
found because of the molecular impenetrability.

Let us evaluateM (u):

M ~u!52unE dV8 f ~u8!P2~cosu0!52unE
0

p

f ~u8!

3F E
0

2p

P2~cosu0!dw8Gsinu8du8

52unP2~cosu!2pE
0

p

f ~u8!P2~cosu8!sinu8du8

52unSP2~cosu! ~2.11!

whereS52p*0
p f (u8)P2(cosu8)sinu8du8 is the scalar order

parameter of the nematic, and for this calculation we u
the equations
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E
0

2p

P2~cosu0!dw8

52pP2~cosu!P2~cosu8!

1
1

3 E0

2p

P21~cosu!P21~cosu8!cos~w2w8!dw8

1
1

12E0

2p

P22~cosu!P22~cosu8!

3cos 2~w2w8!dw8, ~2.12!

and similar relations for the nematic-polymer interaction:

E
0

2p

P2~cosũ0!dw852pP2~cosu!P2~cosũ !

1
1

3 E0

2p

P21~cosu!P21~cosũ !

3cos~w2w8!dw8

1
1

12E0

2p

P22~cosu!P22~cosũ !

3cos 2~w2w8!dw8. ~2.13!

P21 and P22 have the standard significance of associa
Legendre functions.

The last two terms vanish because the integrals from 0
2p of cos(w2wi) or cos 2(w2wi) also vanish. Then

M1~u!52u1n1E dV1g~ ũ !P2~cosũ0!

52u1n1E
0

2p

dw1E
0

p

g~ ũ !P2~cosũ0!sinũ dũ

52u1n1P2~cosu!2pE
0

p

g~ ũ !P2~cosũ !sinũ dũ

52u1n1S1P2~cosu!, ~2.14!

where

S152pE
0

p

g~ ũ !P2~cosũ !sinũ dũ. ~2.15!

Eventually, we get

f ~u!5
1

Z
exp@~unS1u1n1S1!P2~cosu!/kT#. ~2.16!

For the sake of simplicity we introduce the nondime
sional parameters«5un/kT and«15u1n1 /kT representing
the magnitudes of nematic-nematic and nematic-polymer
teractions inkT units. Hence, the partition function becom

Z5E exp@~«S1«1S1!P2~cosu!#dV, ~2.17!

and the orientational distribution function has the express
3-3
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f ~u!5
1

Z
exp@~«S1«1S1!P2~cosu!#. ~2.18!

Now, let us evaluate the internal energy of the system

E5
Nn

2 E dV8 f ~u8!E dV f ~u!U~u0!

1Nn1E dV1g~ ũ !E dV f ~u!U1~ ũ0!

5NS 1

2 E f ~u!M ~u!dV1E f ~u!M1~u!dV D .

~2.19!

To obtain the internal energy in terms of the scalar or
parametersS andS1 we have to calculate

E f ~u!M ~u!dV52E
0

pE
0

2p

unS f~u!P2~u!sinu du dw

52unS252kT«S2 ~2.20!

and

E f ~u!M1~u!dV52u1n1S1E
0

pE
0

2p

f ~u!P2~u!sinu du dw

52u1n1SS152kT«1SS1 ~2.21!

and the result is

E52NSkT~ 1
2 «S1«1S1!. ~2.22!

Similar calculations allow us to obtain the nematic orie
tational entropyS:

S52NkE dV f ~u!ln@ f ~u!#

52NkE dV
exp@~«S1«1S1!P2~cosu!#

Z

3 lnH exp@~«S1«1S1!P2~cosu!#

Z J
52NkE dV

exp@~«S1«1S1!P2~cosu!#

Z
~2.23!

3$~«S1«1S1!P2~cosu!2 ln Z%.

Then,

2TS5NkTE dV f ~u!@«S1«1S1#P2~cosu!

1NkTE dV f ~u!@2 ln Z#

5NkT@«S21«1SS12 ln Z#. ~2.24!
01170
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By taking into account Eqs.~2.23! and~2.24!, the free energy
is obtained as

F5E2TS5NkT@2 1
2 «S22«1SS11«S21«1SS12 ln Z#

5NkT~ 1
2 «S22 ln Z!. ~2.25!

Let us introduce the free energy density inkT units:

F5
F

VkT
52n ln Z1

«nS2

2
. ~2.26!

The free energy density, depends on the liquid crystal or
parameterS and on the partition functionZ. In turn, the
partition functionZ depends onSandS1 as well as onn and
n1 . The last two parameters are calculated with respec
the same valueV so, considering the same order of magn
tude for liquid crystal and polymer densities,

n1

n
;

j

d
, ~2.27!

wherej is the thickness of the interface region andd is the
thickness of the sample, which is much larger thanj. When
one is discussing bulk properties,n1 may be neglected with
respect ton, and«1 may be neglected with respect to«.

We may simplify further the expression of the free ener
density. Let us expressf (u) as a function ofx5cosu. Then

f ~u!5
1

Z
exp@~«S1«1S1!P2~x!#,

Z52pE
21

1

exp@~«S1«1S1!P2~x!#dx.

~2.28!

One gets

dZ

d«
52pE

21

1 ]

]«
exp@~«S1«1S1!P2~x!#dx

52pE
21

1

P2~x!Sexp@~«S1«1S1!P2~x!#dx5ZS2

~2.29!

and

1

Z

dZ

d«
5

d

d«
ln Z5S2. ~2.30!

Integrating with respect to«, apart from a constant, we ob
tain

ln Z5«S2 ~2.31!

or

«nS2

2
5

n

2
ln Z. ~2.32!
3-4
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We now have two alternative expressions for the free ene
density:

F52n ln Z1
n

2
ln Z52

n

2
ln Z52

n

2
«S2. ~2.33!

III. EVALUATION OF ANCHORING COEFFICIENT

The nematic liquid crystal properties in the interface
thicknessj are investigated by considering the effect of t
surface field induced by the photopolymer layer. In the
sence of a surface interaction, the director orientation w
become degenerate. It is the surface interaction that imp
the orientation of the director.

Let us consider a very thin layer of liquid crystal in co
tact with a polymer having the order parameterS1 , lower
than the normal value of the order parameterSof the nematic
phase. To explain the transition from the surface to the b
in terms of the variation of both nematic density and a
polymer density, we assumed the simplest dependencez
of the formn1(z)5ne2z/j andn(z)5n(12e2z/j). For the
sake of simplicity we have considered that the densities
the polymer and the liquid crystal are equal, and also tha
the interface@zP(0,j)# the sum ofn1(z) andn(z) is equal
to n.

If we divide the interface into small sublayers of thickne
dz at a certainz, we will have in each of them a distributio
function centered onu50, but having different widths, i.e.
different order parameters.

In Figs. 2 and 3 we have plotted thez dependence ofS for
some values of«, «1 , and S1 solving the self-consisten
equation forS, namely,

S5
*21

1 exp@~«S1«1S1!P2~x!#P2~x!dx

*21
1 exp@~«S1«1S1!P2~x!#dx

, ~3.1!

where x5cosu. In Fig. 2 we have used a value of« that
normally would not allow the formation of the nemat
phase. If«1 is larger enough than« the nematic phase exist
only in a region of the order ofj, decaying in the bulk to an
isotropic liquid. In Fig. 3« has the normal value of a liquid
crystal ~'4.5! and even if«1S1 is small the value of the

FIG. 2. Self-consistent calculation of the order parameter fo
nematic-nematic interaction« much smaller than the nematic
polymer interaction«1 . The nematic-polymer interaction decreas
from top to bottom. In bulk the nematic phase disappears becau«
is smaller than a critical value~'4.5!. Lines are guides to the eye
01170
y

f

-
ll
es

lk
o
n

f
in

liquid crystal order parameterS increases with increasingz
and approaches a certain limit forz5j.

As previously discussed, the lifting of director degenera
is due to the liquid-crystal–polymer interaction. If an exte
nal agent~a magnetic field, for instance! tends to rotate the
director in the surface plane, the distribution function in t
sublayers of thicknessdzwill have maxima not for the value
u50 but for certain anglesaÞ0, wherea will vary with z.

Considering that, for«/«1 large, the value ofS does not
vary too much even in the interface, the distribution functi
f (u1a) is of the same kind for each sublayer:

f ~u1a!5
1

Z1
exp@«SP2~cosu!1«1S1P2„cos~u1a!…#

~3.2!

wherea, for the sake of simplicity, varies linearly withz,

a~z!5w
z

j
. ~3.3!

Note that in Eq.~3.2! we have considered«SP2(cosu) and
«1S1P2„cos(u1a)… separately because the nematic-nema
interaction must be invariant to a rotation of anglea,
whereas the nematic-polymer interaction will certainly d
pend ona. It is only the nematic-polymer interaction tha
gives an increase in the free energy. Of course,

Z15E exp@«SP2~cosu!1«1S1P2„cos~u1a!…#dV

~3.4!

will be a function ofz.
Together withZ1 , F152(n/2)lnZ1 will also be a func-

tion of z. The extra free energy density, as a function ofz,
will be

DF~z!52
n

2
ln

Z1

Z
. ~3.5!

Thus, the extra energy per unit surface due to a torsion of
director will be

a FIG. 3. Self-consistent calculation of the order parameter fo
nematic-nematic interaction greater than the nematic-polymer in
action. The nematic-polymer interaction decreases from top to
tom. « is now larger than the critical value. Lines are guides to
eye.
3-5
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DF5kTE
0

j

DF~z!dz. ~3.6!

We have to consider the fact that beyond the valuej, i.e., in
the bulk, the liquid crystal is undistorted, so the extra fr
energy density is zero.

The result of the integration depends on the torsion an
w. By definition

1

2

d2DF
dw2 U

w50

5wa ~3.7!

is the coefficient of the azimuthal anchoring. To calculate
anchoring coefficientwa we must not forget that the az
muthal distortion needs to be very small, so we can mak
series development ofP2„cos(u1a)… with respect toa, up to
O(a3):

P2„cos~u1a!…5P2~cosu!1DP, ~3.8!

whereDP is very small.
The partition function will be of the kind

Z15E exp@«SP2~cosu!1«1S1P2„cos~u1a!…#dV

5E exp@~«S1«1S1!P2~cosu!#exp~«1S1DP!dV

'E exp@~«S1«1S1!P2~cosu!#@11«1S1DP#dV

5ZH 11
1

Z E exp@~«S1«1S1!P2~cosu!#~«1S1DP!dVJ
5ZH11E f ~u!~«1S1DP!dVJ , ~3.9!

where, if a is small, we use the approximationea.11a.
With the same approximation written in the form ln(11a)
.a, one gets

DF~z!52
n

2
ln

Z1

Z
52

n

2
lnH11E f ~u!~«1S1DP!dVJ

.2
n

2 E f ~u!~«1S1DP!dV, ~3.10!

whereDP is

DP53a cosu sinu1 3
2 a2~122 cos2 u!1O~a3!.

~3.11!

Hence the extra free energy density is
01170
e

le

e

a DF~z!5
na2«1S1

4~«S1«1S1!

3F 2 expF3

2
~«S1«1S1!GA~6/p!~«S1«1S1!

erf i @A3~«S1«1S1!/2#

2223~«S1«1S1!G , ~3.12!

the function erfi(x)[i erf(2ix)5*0
x exp(t2)dt being strictly

real although it contains the imaginary numberi 5A21.
In Fig. 4 we represent a plot off (m)/m as a function of

m[«S1«1S1 , where

f ~m!5
2e3m/2A6m/p

erf i ~A3m/2!
2223m. ~3.13!

f (m)/m is positive only for m.1.128, which is just the
value for which the isotropic to nematic transition appears
bulk. It corresponds to a value of« around 4.5.

The extra free energy per unit surface will be

DF5kTE
0

j

DFS zw

j Ddz5kT
j

w E
0

w

DF~a!da

5
nj

12
w2

«1S1

m
f ~m!kT, ~3.14!

and

wa5
1

2

d2DF
dw2 U

w50

5
nj

12
kT

«1S1

m
f ~m!. ~3.15!

Considering thatS also varies in the interface together wi
n(z) and n1(z), it is possible to make a self-consistent n
merical computation. The result for the constantwa as a
tridimensional plot with respect to«S and«1S1 is presented
in Fig. 5.

One may consider typical values for liquid crystals
follows: molecular massM50.5 kg/mol, average density~in

FIG. 4. f (m)/m as a function ofm, wherem5«S1«1S1 and
f (m) is defined in Eq.~3.13!.
3-6



m

ls

2
an

on

ter-

the
on

nt

t
-

e of

ned,
ent

by

ero

as
5-

STATISTICAL APPROACH TO THE ORIENTING . . . PHYSICAL REVIEW E65 011703
the region up toj! r553102 kg/m3, interface thickness
j55 nm, T5300 K. With these values

njkT

12
'1

mJ

m2 ,

and the function

f ~m!

m
5

1

m H 2e3m/2A6m/p

erf i ~A3m/2!
2223mJ

is 2 for m54, corresponding to nematic scalar order para
eters around 0.7~see also Fig. 3!. For «'4.5, «1'3, S1
'0.3, the anchoring coefficient is

wa'1.8
mJ

m2 .

The numerical computation presented in Fig. 5, which a
implies a self-consistent calculus forS, agrees well with this
value, giving for wa numerical values between 1 and
mJ/m2. This order of magnitude corresponds to a strong
choring.

IV. CONCLUDING REMARKS

Using a mean field approximation we have obtained
self-consistent Boltzmann-type orientational distributi

FIG. 5. Three-dimensional plot of the anchoring coefficientwa

as a function ofS1 andS. The height is in mJ/m2.
J.
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function which depends both on the nematic-nematic in
action energy« and on the nematic-polymer energy«1 , and
also on the polymer order parameterS1 . In the interface
region of thicknessj, S depends onz by means ofn(z) and
n1(z). Assuming that the twist anglea, induced, for in-
stance, by an external field, is small, we have estimated
excess free energy density, which depends quadratically
a. This gives a finite azimuthal anchoring energy coefficie
wa which depends on the interface thicknessj, the nematic-
polymer interaction«1 , the polymer order parameterS1 , and
a certain functionf (m). The last two are the most importan
because through the dependence onS1 one gets a depen
dence on the exposure time to the UV light@1,3#. Actually,
for values of«S of physical interest, i.e.,«S up to 3 and
«1S1 up to 1, the function («1S1 /m) f (m) may be expanded
in series and one gets

«1S1

m
f ~m!520.0811.68«1S110.25~«1S1!2

which is an almost linear dependence on«1S1 if the latter is
not larger than 1, i.e., we have a mainly linear dependenc
wa on S1 . It was shown in Figs. 3 and 4 thatS depends on
the values ofS1 only in the transition region of orderj, not
in the bulk. So the contribution ofS1 to the bulk state of a
nematic liquid crystal is just to give the direction ofn. On
the other hand, as far as the anchoring energy is concer
the value ofS1 is essential because the anchoring coeffici
wa does depend onS1 both directly and also by means ofS,
which depends, in turn, onS1 within the transition region.

One may also see that, althoughwa depends linearly on
the transition widthj, one has little~if any! control ofj. The
only parameter that may be controlled, for example,
changing the exposure time@3#, is S1 .
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